广东策智市场信息咨询股份有限公司
公司地址:广州市天河区林和中路188号附楼三楼A之D08
其它地址:湖南省长沙市天心区劳动西路293号嘉盛奥美城1708室 ;湖北省武汉市建设大道538号同城广场A栋1202;
联系电话:13148420404
公司传真:020-29819059
办公手机:18620250304
官方网址:http://www.gdczdy.com/
企业邮箱:guangdongcezhi@163.com
行业动态
您当前位置:首页 > 行业动态
市场研究方法之聚类分析
信息来源:   发布时间:2016-4-25   浏览:

什么是聚类分析


聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。

聚类与分类的不同在于,聚类所要求划分的类是未知的。

聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。

从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。

从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。


聚类分析的主要应用


在商业上

聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。

聚类分析是细分市场的有效工具,同时也可用于研究消费者行为,寻找新的潜在市场、选择实验的市场,并作为多元分析的预处理。

在生物上

聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识

在地理上

聚类能够帮助在地球中被观察的数据库商趋于的相似性

在保险行业上

聚类分析通过一个高的平均消费来鉴定汽车保险单持有者的分组,同时根据住宅类型,价值,地理位置来鉴定一个城市的房产分组

在因特网应用上

聚类分析被用来在网上进行文档归类来修复信息

在电子商务上

聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面,通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助电子商务的用户了解自己的客户,向客户提供更合适的服务。


聚类分析的主要步骤


1.数据预处理,

2.为衡量数据点间的相似度定义一个距离函数,

3.聚类或分组,

4.评估输出。

数据预处理包括选择数量,类型和特征的标度,它依靠特征选择和特征抽取,特征选择选择重要的特征,特征抽取把输入的特征转化为一个新的显著特征,它们经常被用来获取一个合适的特征集来为避免“维数灾”进行聚类,数据预处理还包括将孤立点移出数据,孤立点是不依附于一般数据行为或模型的数据,因此孤立点经常会导致有偏差的聚类结果,因此为了得到正确的聚类,我们必须将它们剔除。

既然相类似性是定义一个类的基础,那么不同数据之间在同一个特征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,通常通过定义在特征空间的距离度量来评估不同对象的相异性,很多距离度都应用在一些不同的领域,一个简单的距离度量,如Euclidean距离,经常被用作反映不同数据间的相异性,一些有关相似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概念相似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的相似性。

将数据对象分到不同的类中是一个很重要的步骤,数据基于不同的方法被分到不同的类中,划分方法和层次方法是聚类分析的两个主要方法,划分方法一般从初始划分和最优化一个聚类标准开始。CrispClustering,它的每一个数据都属于单独的类;FuzzyClustering,它的每个数据可能在任何一个类中,CrispClustering和FuzzyClusterin是划分方法的两个主要技术,划分方法聚类是基于某个标准产生一个嵌套的划分系列,它可以度量不同类之间的相似性或一个类的可分离性用来合并和分裂类,其他的聚类方法还包括基于密度的聚类,基于模型的聚类,基于网格的聚类。

评估聚类结果的质量是另一个重要的阶段,聚类是一个无管理的程序,也没有客观的标准来评价聚类结果,它是通过一个类有效索引来评价,一般来说,几何性质,包括类间的分离和类内部的耦合,一般都用来评价聚类结果的质量,类有效索引在决定类的数目时经常扮演了一个重要角色,类有效索引的最佳值被期望从真实的类数目中获取,一个通常的决定类数目的方法是选择一个特定的类有效索引的最佳值,这个索引能否真实的得出类的数目是判断该索引是否有效的标准,很多已经存在的标准对于相互分离的类数据集合都能得出很好的结果,但是对于复杂的数据集,却通常行不通,例如,对于交叠类的集合。


聚类分析的算法


聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。


相关热点
版权所有  广东策智市场信息咨询股份有限公司 http://www.gdczdy.com/ 
公司地址:广州市天河区林和中路188号附楼三楼A之D08 分公司地址:湖南省长沙市天心区劳动西路293号嘉盛奥美城1708室 ;湖北省武汉市建设大道538号同城广场A栋1202; 
电话:13148420404  手机:18620250304  传真:020-29819059 联系人:胡先生 
网站ICP备案号:粤ICP备2023013887号-1  术支持:斌网网络
在线客服 资深顾问